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Abstract-The paper is devoted to the kinetic theory of continuously distributed dislocations. After
defining the particle velocity distribution function and its moments, we derive transport and collision
parts of the kinetic equation. Its right hand side is based on the Fokker-Plank long-range interaction
for dislocations. The expressions obtained for the diffusion coefficients of this equation are found
to be similar to analogous values obtained by others. As a result of a successive procedure of
averaging the kinetic equation, the transport equations for dislocation density and flow density
tensors are derived. In particular, the first moment equation is found to be similar to the well-known
equation of the conservation of the Burgers vector in the continuous theory of dislocations. Some
general features of the system are discussed and a one-dimensional example is used for calculating
the dislocation drag coefficient in dynamically loaded media.
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distribution function of dislocations in the velocity space
the same for the equilibrium case
distribution function for dislocations of a single slip system number s
dislocation density tensor
average dislocation density
dislocation velocity tensor
instantaneous dislocation velocity
average dislocation velocity
relative dislocation velocity
the second statistical moment of the distribution function
the third statistical moment of the distribution function
effective mass of dislocation
Burgers vector
external driving force of dislocation
dislocation dumping coefficient
coefficient of dynamic friction in the Fokker-Plank equation
diffusion coefficient in the Fokker-Plank equation
elastic shear modulus
Lame-elastic coefficient
mass density of material
displacement of medium due to dislocation motion
plastic distortion tensor
Green tensor in the dynamic elasticity theory
wave vector
frequency
Levi-che-Vitta tensor
stress tensor
relaxation time for the velocitv distribution function
transverse sound velocity ~
phase velocity for wave propagation in the dislocation medium
decay decrement for stress wave propagation
collision term in the kinetic equation

1. INTRODUCTION

The continuous theory of dislocations is known to deal with averaged characteristics of
dislocations, such as mean density and mean velocity. There are two classes of problems
which can be solved by the continuous theory of dislocations. In the first class, space
distribution of dislocation density and velocity are given, and the ultimate goal is to find
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the space distribution of the stress and displacement fields in the medium. This direction of
the classical continuous theory of dislocations has been developed in its final form by
Kondo (1949), Bilby (1955), Kroner (1955), Mura (1963) and Kosevich (1964).

The second class, on the contrary, proceeds from a knowledge of the stress and
displacement fields, while the density dislocation tensor and flow dislocation density tensor
are unknown. This direction in dislocation theory has been developed by Head and Wood
(1972) and Rosenfield and Hahn (1972). Both cases mentioned deal with static and quasi­
static loading and cannot describe the dynamic behavior ofdislocations and their ensembles.

The next important step has been the subdivision of the dislocations into slow (gliding,
climbing, cross-slipping or even pinned at obstacles) and fast (driven by high stress)
dislocations. The reaction-diffusion equations introduced by Aifantis (1983, 1986, 1987)
appear to be appropriate for describing the dislocation dynamics, their motion and inter­
actions. This approach results in the method of description of structure instabilities, per­
sistence of dislocation patterns, ladder structures, shear bands and so on.

The statistical behavior of the elementary particles in the mechanics of fluids and gases
is known to define the processes which cannot be understood and described on the basis of
the average medium characteristics. For example, it describes the decay of the waves in
plasma, molecular relaxation in gas flows in lasers, fine structure of shock waves, etc. An
analogous situation occurs in the mechanics of solids, where plastic flow results from the
motion of the elementary carriers of deformation, such as point defects, dislocations, twins,
planar defects and so on. It can thus be argued that their motion may be characterized by
some distribution in the velocity space, the character of that distribution being defined not
only by the mutual interaclion of the elementary carriers but also by their interaction with
the medium in which they move. In particular, the kinetic approach to dislocation structures
should be developed for the description of transient and non-equilibrium processes in solids.
These processes are thought to playa key role in the unsteady wave propagation and
dynamic localization of deformation. At the same time, well-known dislocation charac­
teristics such as the density and flow of dislocations can be defined as the statistical moments
of the velocity distribution function. The latter can be found from the kinetic equation for
dislocations which, in turn, must be self-consistently related to the stress and displacement
fields through the equations of the continuous theory of dislocations. The situation is
similar to the kinetic plasma theory where, for example, the Vlasov equation describing the
evolution of the charged particle velocity distribution function is "locked" with the con­
tinuum variables via the Maxwell equations.

A desirable kinetic theory must also satisfy the following requirements.
The theory must first take into account the dissipative character of dislocation motion

in the medium, i.e. the equation of dislocation motion must include the interaction of
dislocations with the dissipative medium.

Secondly the long range character of the dislocation interaction must be taken into
account as well, i.e. the kinetic theory at hand must be able to describe the processes of
deformation in which the collective properties of dislocation structures are accounted for.

Thirdly for the description of highly non-equilibrium processes accompanied, for
example, by high strain deformation, the kinetic theory must not neglect the internal
properties of the elementary carriers of deformation. Inertia is typically ignored in quas­
istatic dislocation theories, although the importance of this term is probably under­
estimated.

Last but not least is the question of scale averaging in a kinetic description ofdislocation
structures. Every elementary volume must contain a lot of dislocation pieces belonging to
different dislocation lines in order for their description in terms of distribution functions to
be justified from the point of view of the statistical approach. When the considered process
assumes dislocation multiplication, the averaging scale must be chosen from the condition
that it must be greater than the mean distance between dislocation sources.

The development of the kinetic theory of dislocations includes the following stages:

(i) The definition of the velocity distribution function of dislocations as objects, charac­
terized at every point in space by the tangent direction to the dislocation line and by
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the Burgers vector; separate segments of the dislocation line may be of different
orientations in space and different velocities.

(ii) The derivation of the kinetic equation for the distribution function. The convective
and collision parts of the equation must take into account the dissipative properties
of the medium where dislocations move, as well as their mutual long-range interactions.
The collision part of the equation, in general, must allow not only the redistribution
of dislocations under external stress but also their nucleation and annihilation during
the deformation process.

(iii) The definition of equilibrium dislocation functions.
(iv) The derivation of the moment equation system from the kinetic equation. This system

must coincide with the well-known equations of the continuous dislocation theory. A
different approach based on the statistical dislocation description and the Kirkwood
transport equation system has been developed by Zorski (1968).

In this study we follow the above sequence in designing the present kinetic theory of
dislocations (sections 3--5). In section 5 a derivation procedure of transport equations is
carried out. We have also undertaken an analytic investigation of the kinetic behavior of
dislocation structures during unsteady external loading. When applied to stress pulse
propagation problems this theory results in an obvious expression for the decay decrement
of the stress pulse amplitude reminiscent of the well-known "Landay decay" in plasma
(section 6).

2. DEFINITION OF THE DISTRIBUTION FUNCTION

Taking into account the configurational complexity of dislocation lines it is relevant
to use a tensorial description of the dislocation continuum. Such descriptions are used in
the continuous dislocation theory where the dislocation density is a second rank tensor;
the first index characterizes the tangent direction to the dislocation line and the second one
is the direction of the Burgers vector. According to this definition J:k(r, v, t) dr dv dt is a
mathematical expectation of the number of dislocation segments of type ik in the volume
dr at the moment from t to t+dt with the velocities in the range from v to v+dv. The zero
moment of the distribution function obtained by its velocity averaging

(1)

then gives the dislocation density tensor.
The first statistical moment ofthe distribution function defines the so-called dislocation

velocity tensor or dislocation flow tensor:

(2)

In such definitions the zero and the first statistical moments of the distribution function
coincide with the dislocation density tensor and dislocation velocity tensor introduced in
the continuous dislocation theory. Accordingly, an analogous restriction of the continuous
theory of dislocations has to be applied to the components of the distribution function:

(3)

which is the conservation condition for the Burgers vector along the dislocation line.
The average flow of dislocations of kind ik in the direction p can be expressed in terms

of the dislocation density tensor in the form
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(4)

where up is the p-component of the average dislocation velocity which can be expressed in
terms of the instantaneous velocity v and the relative velocity c as follows:

(5)

By analogy with the kinetic theory of fluids, one can introduce the subsequent moments of
the distribution function in the form:

(6)

(7)

where P is analogous to the pressure tensor in the mechanics offluids and Qcan be identified
with the energy of chaotic dislocation motion.

3. THE KINETIC EQUATION

The common form of the kinetic equation can be written as

DJ
Dt = Icoll '

(8)

The left hand side of this equation represents the convective part of the distribution function
change and the right hand side part is the so-called collision integral of the kinetic equation.
In the one-dimensional case, the convective part of this equation has the form:

(9)

where the components of dislocation acceleration ov/at can be obtained from the equation
of dislocation movement:

mav/at = F - Bv. (10)

Here m is the "effective" dislocation mass, F is the well-known Peach-Koehler force due
to external action onto dislocation lines and B is the dislocation damping coefficient which
takes into account the interaction of moving dislocations with the medium. Then the kinetic
equation [eqn (8)] becomes:

af af (F B ) af B-;- +vx -;- + - - -v, :l + -f = I coll '
ut ux m m uV m

(11)

One can see that the convective part of the kinetic equation, due to the dependence of the
acceleration of dislocations on their velocity, differs from that in the classical mechanics of
fluids and gases where the particles interact with each other only. Both additional terms
(B/m)v x and (B/m)f show the sequence of the dependence of dislocation motion on their
dissipative interaction with the medium through the damping coefficient B.

In our theory, the collision part of the kinetic equation I coll is introduced in the so­
called Fokker-Plank collision term, the common form of which is as follows:
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(12)

Here D] and D2 are Fokker-Plank coefficients. D) is the dynamic friction coefficient and D2

is the coefficient of diffusion in velocity space. Their dependence on the dislocation medium
parameters will be given in section 5 but now we write the expression for the equilibrium
form of the distribution function. For this we will use the Fokker-Plank form of the
collision integral. Combination of eqns (11) and (12) gives:

ry2 O. (F B) B.--(Dd)-2-(Dd)-2 - - -v +2--.1 = O.ov2 ov m m m
(13)

We shall assume in this analysis that the velocity dispersion determined by the diffusion
coefficient D 2 does not depend on the dislocation velocity itself. This means that for the
equilibrium distribution of dislocations, the diffusion coefficient remains constant in the
velocity space, which makes it possible to write the equilibrium equation in the form:

(14)

This equation can be integrated and if the integration constant is determined from the
condition of the constant in the time average dislocation density p(x) the solution of eqn
(14) becomes:

( B )1,0 [B ( F)'Jfo(x, v) = -- p(x) exp - -- v- - .
D 2m D 2m m

(15)

The above expression characterizes the quasi-equilibrium velocity distribution of dis­
locations for one-dimensional movement. This equilibrium distribution has a mean dis­
location velocity:

and a velocity dispersion:

u = FIB (16)

(17)

4. DIFFUSION COEFFICIENTS

The coefficient D] = <!1v)/!1t in eqn (12) is calIed the dynamic friction coefficient. The
vector with the components m<!1v)/!1t is a friction force directed opposite to the mean
dislocation velocity a. The collision integral I coll of the Fokker-Plank equation includes only
the mutual interaction ofdislocations. The breaking force arriving due to this interaction has
a fluctuative nature. The breaking force due to the interaction of dislocations with the
medium, where they move, is taken into account in the convective part of the kinetic
equation.

It has been shown by Hubburd and Thompson (1960) that the relation between the
first and the second diffusion coefficients of the Fokker-Plank equation has the form:

(18)

Then the collision integral can be modeled in a more explicit form:

SAS 32-12-F
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(19)

and our main problem now is to obtain the obvious expression for Dz. The latter can be
obtained with the help of the stress correlation function according to the following general
relation:

(LiVLiV) bZ f+oo
D z = tJ.t =2 (&(O,O)&(vr,r)dr

m -00

where «(J(J) is a stress correlation function.
Derivation of the stress correlation function is based on the use of the continuous

dislocation theory in the form developed by Mura (1963) and Kosevich and Nacik (1966) :

(20)

Here TV is the distortion, U is the displacement, Po is the mass density of the medium, P;k
are the dislocation density tensor components, (Jik are the stress tensor components and
A;klm are the elastic moduli. This system allows the stress correlation function of the velocity
dislocation tensor 1 to be stated as follows:

(21)

where

(22)

Gis the Green tensor in the dynamic theory of elasticity (Kosevich and Nacik, 1966),
and l(i<., w) is the Fourier transformation of the dislocation velocity tensor.
Omitting the intermediate steps of the calculation, one can obtain the final result in the
form:

(23)

The expression is very similar to that obtained by Alekseev and Strunin (1975) using an
entirely different method.

We are now in a position to write down the final form of the kinetic equation for the
dislocation structure:
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The last two terms in eqn (24) account for the processes of multiplication and annihilation
of the dislocations respectively.

5. STRESS IMPULSE DECAY IN THE DISLOCATION CONTINUUM

Using the kinetic approach we make an attempt to describe the decay of short com­
pression impulses in solids. There is considerable interest in predicting dissipative effects
stipulated by the dislocation structure only. Now it is well known (Johnston et al., 1970)
that the one-dimensional phenomenological dislocation theories based on relaxation equa­
tions of the Gilman-Johnston type cannot describe the decay of precursors in shock-loaded
solids. This is due to the fact that these theories take into account only independent
movement of dislocations in the expression for the general strain rate, whereas the collective
interaction of dislocations during the wave passage is neglected.

The outlined formulation permits us to overcome this deficiency. We shall see that the
distribution of the dislocations in velocity space plays an important role in the decay of the
stress waves. We consider the propagation of submicrosecond stress impulses by way of a
dislocation structure having some velocity distribution. Again we shall begin from the
equations of the continuous theory:

(25)

where Po is the density of material. Their combination results in the following equation:

(26)

Here sign L s means summarizing all the slip planes of the crystal. Making use of the
definition of the velocity dislocation tensor via the velocity distribution function of the kind
s in the form:

(27)

One can find the components of the distribution function from a kinetic equation of the
relaxation type:

(28)

Here 'r is the relaxation time of the distribution function towards an equilibrium state and
mis the dislocation mass tensor. When represented as a sum f = fa +f" where fo » fj, the
distribution function appears to be described by an equation whose Fourier's form reads:

. ." 1 8ft
lwf~ +lkv!'1 + - f\ = abm- I

-

'r 8v

from where:
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af' [ iJ1\ =iabm- J
-·-

O w-kv-- .
aV r

For the one-dimensional case this value defines the dislocation velocity tensor according
to:

]' = b f+ ~.,. Lif'; dv
-x

and eqn (27) becomes:

Po ) b
2 f+D alb ( i)-lk 2 --w-+-pw . - w-kv-- dv=O.

J1 m ~ av r,

Using the equilibrium distribution function given in eqn (15), one can transform this
equation to the form:

(29)

It is convenient to present the integral as a sum of two integrals each of which is an average
of the values v2(w-kv-i/r,)-1 and v(w-kv-i/r,)-l along the equilibrium distribution
[eqn (15)] :

where

I I~ v2 exp [- (v _.ii)2 /v6]
<Y2)=-- . dv

r:;k;;o 0 (w-kv-I/r,)
v

After averaging, one obtains;

<Y3) = o.

and the dispersion equation [eqn (29)] becomes:

w2 . / (wo )2 [(W ii)2J c}1---+21 In - exp - --- +~=O.
k 2 c2 V kvo kv V c2

I /

where c/ = j;iP is ~nsverse sound speed in the solid, cf = wo/k is the phase velocity
of the wave, Vo = .JDm/B is the average velocity of the fluctuation motion of dislocations
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and W o = J f1 b2 p/m is the frequency of the collective oscillations of the dislocation struc­
ture.

Then subdividing the frequency into real and imaginary parts, W = wo(1 + i(j), where
(j is the decrement of decay, one can obtain for the latter,

(30)

Now we consider two limit situations to the absence of drag B = 0 and to large values of
the drag coefficient B ~ 00. For the first case we have

U (Jb [ 2B JI /2
vA = B D 2m ~ 00,

and thus

As a result, (j ~ 0 and decay is absent. For the second case ulvo ~ 0 and wo/kvo ~ 0 and
decay equals to zero again. With increasing diffusion velocity va the decay decrement (j

decreases, indicating that the velocity distribution of dislocations leads to a decrease in the
impulse decay. The intermediate situation is obviously related to a non-monotonous sharp
decay increase. From eqn (30) one can find the value of the dynamic viscosity B of
dislocations, using the experimental data from the short compression impulse decay. The
result for aluminum is 2 X 1O-4Pa' c. Thus, discounting a collective interaction of dis­
locations gives the possibility of describing the short impulse propagation of solids in a
more correct manner. What is the physics of this phenomenon? In dynamic compressive
waves the dislocations can have velocities both greater and lower than the phase velocity
cf' It is known that in ensembles of particles distributed according to eqn (15) the number
of particles with velocities lower than the given phase velocity is greater then the number
of those with greater velocities. Therefore the number of dislocations which are carried
away by the stress wave exceeds the number of dislocations which give their energy to the
wave. As a result, there is a stress wave decay similar to the well-known "Landau decay"
in plasma. This is an essential collective effect. Thus, an account of the collective interaction
of dislocations leads to the necessity of including the inertial characteristics of dislocation
structure, which define both the frequency of their collective oscillations and the average
velocity of chaotic motion va of dislocations. It should be recalled that previous inves­
tigations devoted to the inertial behavior and acceleration of individual dislocations have
concluded that their influence on stress pulse propagation is negligible in comparison to
that of the exact shape of the stress pulse, as follows from Gillis and Kratochvil (1970).
This is true only for individual dislocations. In reality the inertial features of dislocations
define their velocity distribution in the kinetic meaning and thereby define the character of
flowing high-velocity processes in solids.

6. TRANSPORT EQUATIONS

The next step in our formulation is the derivation of moment equations from the
kinetic equation using a standard procedure of averaging. Making use of the definitions of
pand j in terms of the distribution function after multiplying the kinetic equation by zero
degree velocity i.e. by unity, and after integrating in velocity space one can obtain the zero
moment of the kinetic equation. During formal procedures, both the tensor character of
the distribution function, and the prohibition of the dislocation motion along itself should
be overlooked. The convective part of the kinetic equation gives:
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fa} a f' a-;;-dv = - fdv =;:;- P
ot at ot

fV;X(VX})dO=O

fV-; x (0 x}) dv = V-; x f(0 x}) do = V-; x 1. (31 )

The second term gives zero because the distribution function aspires to zero on the inte­
gration limits. For the collision term I coll one has:

fIX' (0 x}) do = IX • j

ff3 -}(0d .f} (0) do do 1 = f3' p.p. (32)

For obtaining the moment equation from the Fokker-Plank part of the collision term
we multiply eqn (12) by the arbitrary function ¢(o) and integrate in velocity space, i.e.

(33)

All terms on the right hand side equal zero due to the correlation between diffusion
coefficients [eqn (18)]. Conversion into zero of all terms of the Fokker-Plank collision term
during integration means that long-range interactions between individual dislocations do
not affect the macroscopic convection of dislocations. This convection is thought to be
related only to the first part of the collision term I coll ' Summing up eqns (32) and (33) one
obtains the zero moment of the kinetic equation:

(34)

When sources and channels are absent the right hand side of this equation equals to zero
and then the left hand side of the equation leads to the equation of "Burgers vector
conservation" which is well known in the continuous theory of dislocations. Thus, this
equation can be obtained from first principles, that is, from the kinetic theory ofdislocations.

The next step is the derivation of the first moment of the kinetic equation. To do this,
we need to multiply the latter with 0 and integrate over the velocity space. The first item on
the right hand side gives:

I- a}d- a (- f')d- f(~ r')d-v x Of v = of v x v - v x. v.

To find the acceleration t in the second term one can use the equation of dislocation motion
[eqn (10)]. Then we obtain:
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f
aj a ~ I B ~

Vx - dv = - J - - ff x P+ - Jat at m m

fv x ('1-; xj)) dv = V-;' p- '1-;' [u (u x p)]
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where P is the pressure tensor determined by eqn (6) and u is the average dislocation
velocity. Taking into account eqn (10), the third term of the convective part of the equation
gives:

f
,2 2B ~

v x (V; x (v x f)) dv = - ff xP- - J.
m m

The collision part, after vector multiplying by vand integrating, gives:

IX fvx (vxj)dv = IX(05+UXJ)

13 f v x j (v I) f j (v) dv dv 1 = 13 J. p

where

05= fCX(CXj)dV.

Summing the right and the left terms of the equation, one obtains for the first moment of
the kinetic equation:

aJ ~ ~ I A ~ A A

;;-- - V(P+uJ) + - (ff xp-BJ) = IX (S+u x J) -13 J. p.
ut m

In the absence of sources and channels, making use of eqn (34), one obtains:

au ~ I
TXP-V' P-V[u' (u xp)]+ - [(0- xp) -Bu x p] = o.
ct m

(35)

This equation is analogous to that of moment transfer in the mechanics of fluids and gases
in a two-phase continuum, and B characterizes the interaction between phases. In the case
under discussion one of the phases is the dislocation structure and the other is a crystal
lattice. Thus obtained equations can serve as an example of a microscopic basis for the
subdivision of media into the two states ("dislocation" and "perfect lattice") introduced
by E. C. Aifantis (1983). Omitting all intermediate operations, we may write down the
second moment of the kinetic equation (see Appendix) :

(
a B) A 2 I A A ~-a - - [S+u x (u x P)] + - [u x (ff xp)]- - ff x (u x p) +v(Q +u[S +u x (u x P)] +PI)
t m m m

=IX(ux[o5+ux(uxp)]+t-2u·P)-f3[o5+u(uxp)]·p. (36)

The tensor quantities 05, Q, t, and P are different order moments of the dislocation
distribution function.

If 05 = Scx (c x j) dv is the energy of the chaotic motion of dislocations in a random
stress field, the sum [5+ux (u x P)] may be related to the total energy transferred by moving
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dislocations. After multiplying by the mass, the second term gives the kinetic energy of
dislocations. Since Q characterizes the transfer of energy due to the chaotic motion of
dislocations (analog of the heat flow vector in the mechanics of fluids and gases), eqn (36)
reflects the balance of energy in the continuum of dislocations moving within a continuous
medium. The interaction of dislocations with this media is described by the term
(B/m)[S+ li x (li x p)]. The action of the internal interaction forces is reflected in the term:

2 I
- [li x (0- xP)] - -0- x (li x p).
m m

Finally, let us write down the single-dimension variant of the energy transfer equation
in the case of absence of sources and channels of dislocations:

o ) I B) 2 (37)
-;;-(S+~rp)+ -CJbpu- -(S+u-p)+V[Q+u(S+u p)+P 1] = o.
ot m m

The term (S+ u2p) is the total energy of the dislocation motion, S is the relative chaotic
motion energy and u2p is the kinetic energy of convective motion with average velocity u.
Thus, eqn (37) suggests that the energy of the moving dislocations is converted over to the
work of external forces, dissipation due to the ductile drag exerted on the dislocations by
the medium, and to work for overcoming the interaction forces and heat transfer.

The system of transport equations for the dislocations obtained above is not closed
until the correlation between the pressure P and the dislocation density is established. This
is analogous to constitutive equations in the mechanics of fluids and gases. In our theory
the appropriate equation for this purpose has a form which accounts for the long-range
interactions of dislocations in terms of the Cauchy-integral

P(r, t) = _D);p5s,~) ds.J r-s

Thus, this equation along with two transport equations:

op
--::;-- +V (pu) = 0
ot

au 2
p-:;:,- +pu!:1u+!:1P- -(CJb-Bu) = 0

ct m

(38)

(39)

constitute the desired closed system. The simulation of stress impulse propagation in the
ductile medium has been carried out for the one-dimensional case. The space and temporal
profiles of dislocation density were calculated for different moments after the beginning of
loading and for different viscosity coefficient values B. Some of these profiles are shown in
Figs 1-3. The calculations result in specific values for the drag coefficient (e.g. for aluminium
and other materials). One of the interesting results obtained from these simulations is a
non-monotonous profile ofthe strain rate (see Fig. 4). This result resembles the experimental
data observed during dynamic deformation processes.

In conclusion we wish to emphasize that our method is different from the generally
accepted ones. In the latter, the one-dimensional equations for deformations and stresses
are closed by the one-dimensional constitutive equation which is expressed via dislocation
dynamics (as in the case of the Gillman-Johnston equation). Our approach permits the use
of the well-known three-dimensional formulation in the mechanics of fluids.
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Fig. I. Dependence of the normalized dislocation density on the distance from the load boundary
for drag coefficient B = 3 X 10- 4 ps and different moments after beginning the loading. I--'l:l =

45 ns, 2-'2 = 60 ns, 3-'3 = 90 ns.
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7. CONCLUSIONS

(1) The kinetic approach is developed taking into account the dislocation distribution
in the velocity space, long-range mutual interaction and inertial effects. The procedure
employed here is similar to that used in the kinetic theory of fluids and gases. The mean
dynamic variables, such as the density dislocation tensor, velocity tensor, etc. are introduced
as different order moments of the dislocation velocity distribution function. These values
are chosen to coincide with the well-known dynamic variables of the classical continuous
dislocation theory.

(2) An example of the application of the kinetic approach to compressive pulse
propagation is given on the basis of an explicit form of the kinetic equation of relaxation
type. Decay decrement appears to be directly dependent on the collective oscillation fre­
quency of the dislocation structure and on the diffusive dislocation velocity.

(3) The transport equations as different order moments of the kinetic equation are
subsequently derived by using a standard procedure of averaging. In the absence of sources
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~
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0.5

o

234
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Fig. 2. As Fig. I. for B = 10- 4 ps.

3
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Fig. 3. As Figs I and 2 for B = 10- 5 ps.
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Fig. 4. Dependence of the strain rate on the distance from the load boundary x = 0 for drag
coefficient B = 10- 4 ps and different moments after beginning the loading.

and sinks of dislocations, the zero moment equation appears to coincide with the cor­
responding "Burgers vector conservation" equation in a continuous theory of dislocations.

(4) The step-like stress pulse propagation is investigated as a simulating task of
interest. To close the derived system of transport equations, a constitutive equation in the
Cauchy form is used, which makes it possible to account for a non-local dislocation
interaction.
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APPENDIX

The second moment of the kinetic equation for dislocations can be obtained by multiplying the kinetic equation
by vand integrating in the velocity space

f ( oj) 8 f ' f " f' ,vx vX-:;- dv=- vx(vxf)dv- vx(vxf)dv- vx(vxf)dv
ot at

a f ,I f - I f - 2B f= - (e+u) x [(Hu) x.f1 dv- - V(O- xf) dv- - it x (v xf) dv+ - v x (v) dv
~ m m m

(
a 2B) _ I I= -a +- [s+ux(uxp)]--ux(iTxp)--iTx(uxp).
t m m m

Here

s= f(eX(eXh)dV

fVX(VX(VvX(VX!)))dV= fVX(VXVvXA)dV, A=vx):

In component form we have:

The first integral equals zero since the distribution function equals zero at the ends of the integration interval. The
other two terms give:

So

f
- f' - 3f 'vx (v(V, x (ex (V xf))) dv =3 vx (exf)dv =;;; vx (iTxf)dv

3Bf - 3 3B --- vx(vxf)dv=-ux(iTxp)--[S+ux(uxp)].
m m m

Let us integrate the second item of the equation

fvx {vx [V, x (vxjm dv = V,' fV[(VX (vxj)]dv = V,·lJ

where

lJ = f e[e x (e xj)] dv+ f e[e x (u xj)] dv+ f e[u x (e xj)] dv

+il f ex (c xj) dV+U[U x (u x f j dV)] = Q+il[u x (u xP)] +u· S+e[u x (e xl)] dv+ f e[e x (u xj)] dv.

Let us now combine the last two integrals into a common term Pl' Then the second term of the desired equation
has the form :
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fv x :f x [V', x (i' xl)]] d1' = V', {Q +u· [8+ u x (u x p)] + Pd = J oau ·

For the interaction part of the transport equation we have:

where

and

P, = fCX[UX(cxI)+cX(UX/)]dV.

Ifwe take into account that dislocations cannot move along on their own, then

Multiplying the second term of the right hand side of the kinetic equation by vand integrating over the velocity
space we obtain:

-,BIVX(VX/)dV'P = -,B[S+ux(uxjJ)]'P'

So, the right hand side of the second moment of the kinetic equation has the form:

J,oll = x[u x [S+i1 x (u xp)] + T-2u' P] -,B[S+u x (iix p)]. p.

Now we can write the complete transport equation:

(0 B) , 2 I;,--- '[S+ux(uxp)]+ i'x(fJxf!)- --fJx(uxp)
vI m m m

Let us show that this equation is analogous to the equation of energy conservation. Simplifying the equation for
the one,dimensional case when sources and channels are absent. we obtain:

(
D B\ I

-:;- - -)(S+u'P)+ -rrhup+V"[Q+u(S+u'p)+Pd = 0
u{ 111 JJ1

or

, . I B, ,
, (S+wp)+ -rrbpu- -(S+wp)+V'[Q+u(S+u-p)+Pd = o.
{" rn In

The term (S+ u'p) can be identified with the total energy of dislocation motion where Sis analogous to the chaotic
motion energy and z/p is the kinetic energy or that motion with a mean velocity u. The equation just obtained
shows that the energv of moving dislocations appears to he spent on the work against external forces, viscosity
damping of dislocations in thc medium, the work against internal stresses due to dislocation interactions and for
heat transport. The right hand side or the equation is the energy for source activation and annihilation of
dislocations during their interaction.


